Modeling Topics and Behaviors of Microbloggers: An Integrated Approach

Tuan-Anh Hoang⁺ and Ee-Peng Lim^{*}

+L3S Research Center, Leibniz University of Hanover, Germany

*Living Analytics Research Centre, Singapore Management University, Singapore

1

Microblogging: Rich Data Sources

- Social network + information network
 - Users interact with other users
 - Users generate and consume content
- Large number of users
- Heavily used in daily life

300M monthly active users **500M** tweets every day

170M monthly active users

Data is publicly shared

Microblogging: Multimodal Data

- User generated content
- User behavior of multiple types
 - Relationship:
 - Communication:
 - Propagation:
 - Linguistic:
 - etc.
- Etc.

follow, unfollow other users, etc. reply, mention other users, etc. retweet, share URL, etc. use hashtag in tweets, etc.

Applications

User profiling

Personalized recommendation

Personal Interest & Community Interest

- · Interests may be shown in either content or behavior
- Users' personal interest is not always the same with interest of their topical communities (realms)

Been using @Microsoft #Windows8 on desktop & tablet. It's very promising.

New #HTML5 #Javascript book @Amazon HTML5 Game Development Insights 24 chapters 20 authors ...

Avoid canned #foods, especially for your #kids

Good piece on @BarackObama, #OFA, and the midterm #elections: http://bit.ly/aZoeSb #p2.

.Net Dev, HTML5, JavaScript, Basketball

Follows: Microsoft, ForbesTech, <u>NBA, MiamiHeat,</u> BarrackObama, CNNPolitics

Retweets from: ForbesTech, <u>MiamiHeat,</u> BarrackObama, CNNPolitics

Mentions users: @Microsoft, @Amazon, @BarrackObama

Adopts hashtags: #windows8, #JavaScripts, #kids, #foods, #elections, #p2

Shortcomings of Existing Works

- Consider either user content or user behavior
 - E.g., Ramage et al. 2010; Zhao et al. 2011; Cheng et al. 2014; etc.
- · Consider only a single type of behavior
 - E.g., Liu et al. 2010; Yan et al. 2012; Barbieri et al. 2014; etc.
- Do not differentiate between personal interest and realms
 - Determine a users' personal interest solely based on interests of their realms.
 - E.g., Yin et al. 2012; Sachan et al. 2014; etc.
 - Determine a realm's interest by aggregating interest of its members
 - E.g., Kim et al. 2012; Yang et al. 2014 ; etc.

This work

- To learn users' personal interest and interest of their topical communities from both content and behavior
 - Topical community = Realm
- To differentiate between the two kinds of interests
- To learn users' dependency on their realms in generating content and adopting behavior

Integrated Approach

- To develop a unified model that considers:
 - Both content and behaviors of multiple types
 - Both personal interest and realms
- Modeling principles
 - Users may belong to multiple realms
 - Topic of content/ behavior may be chosen from either user' personal interest or one of her realms
 - The source of topic is determined by user's bias toward her realms

Data Representation

• Tweet = bag of words

"He likes football and his brother likes basketball"

= {and:1, basketball:1, brother:1, football:1, he:1, his:1, likes:2}

- Topic = multinomial distributions over words/ behaviors
 P{"match"| topic = "sport"} >> P{"programming"| topic = "sport"}
 P{following Barack Obama| topic = "politics"} >>
 P{following Justin Bieber| topic = "politics"}
- Interest = multinomial distribution over topics
 P{topic = "fashion"| "interested in fashion"} >>

P{topic = "sport"| "interested in fashion"}

GBT Model

- ϕ topic's word distribution
- λ topic's behavior distribution
- α user's topic distribution
- σ realm's topic distribution
- μ user's bias
- π user's realm distribution
- c source index
- *r* realm index
- z topic index
 - \longrightarrow if c = 0

$$\longrightarrow$$
 if $c = 1$

Sparsity Regularization

- To obtain semantically clearer realms
 - Realms and users focus on different topics
 - Different realms focus on different topics
- Bias toward skewness in Prob{source c| topic z}
 - Topic z is mostly covered by either users' personal interest or realms
- Bias toward skewness in Prob{realm r | topic z}
 - Topic z is mostly covered by one or a few realms

SE Dataset

- Collected from a set of Twitter users following influential software developers in August – October, 2011
- 14K+ users
- Content: 3M+ tweets
- Behaviors
 - 350K+ user mentions
 - 890K+ hashtag adoptions
 - 900K+ retweeting

Likelihood & Perplexity in Content Modeling

- Baselines:
 - TwitterLDA (Zhao et al., 2011): consider content only
 - **QBLDA** (Qiu et al., 2013): consider content + behavior types
- Training set/ test set: 90%/ 10%

Realms' Top Topics

Top topics learnt by GBT model

Realm	Realm			
Id	Label	Probability		
	Software	44	Scripting programming languages	0.760
0	development	66	Email & social networking services	0.044
		26	Readings	0.043
	Apple's	38	iOS	0.369
1	products	22	iPhone & iPad	0.231
		66	Email & social networking services	0.102
	Daily 76 life 43		Daily stuffs	0.536
2			Foods & drinks	0.098
		26	Readings	0.089

Background topics learnt by baseline models

Model	Top words of background topic
TwitterLDA	life,making,video,blog,change,reading,job,home,thought,line
	team,power,game,ousiness,money,iriends,taiking,starting,month,company
QBLDA	video,life,blog,change,job,game,reading,business,power,making thought,line,home,#fb,giving,friends,team,money,talking,running

Developer Profiling

- To examine the ability of users' personal topics in determining their favorite programming language
- Tasks
 - User clustering
 - Employ K-mean method
 - User classification
 - Employ SVM method
- Dataset
 - A subset of the SE dataset
 - 328 .NET developers
 - 363 developer of non-.NET languages

Performance

0.88

User clustering performance

User classification performance -10-folds cross validation

 Users' feature vector = topic distribution learnt by different models

Most Discriminative Topics

User label	TwitterLDA		QBLDA		TwitterLDA+behaviorLDA		GBT	
	Topic	Topic Label	Topic	Topic Label	Topic	Topic Label	Topic	Topic Label
.NET	66	Microsoft Visual Studio	5	Microsoft Visual Studio	tweet topic 66	Microsoft Visual Studio	69	Microsoft Visual Studio
	7	Windows Tablets & Phones	47	Windows Tablets Phones	tweet topic 7	Windows Tablets & Phones	35	Windows 8
	40	Lance Armstrong	58	Happenings in London	retweet topic 27	Windows developers	65	Windows Tablets & Phones
nonNET	75	Data management	79	HTML & Web	tweet topic 75	Data management	44	Scripting programming languages
	47	iOS & iPhone	52	Internet & Media	tweet topic 47	iOS & iPhone	71	Java software development
	64	Entertainment	62	Web Browsers	tweet topic 9	Readings	48	Open-source data management systems

- Top topics learnt by the baselines models are not always representative
- Top topics learnt by GBT model are more reasonable

Future Works

- To incorporate social factors in modeling content generation and behavior adoption
 - E.g., a user may adopt some behavior due to either topical interests or social influence
- To combine more data sources
 - E.g., geo information and image embedded in tweets, mass media, etc.

Thank you for your attention!