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What was 
#sochi about in 
February 2014 ? 

Understanding meanings of past trending hashtags 
 
 •  Annotation 

is a crucial 
step ! 

 
•  Goal: 

Mapping 
hashtag to 
Wikipedia 
pages 
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Research Goal 
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Semantic annotation for hash tag is not easy: 

•  Hashtags are peculiar 

 

•  Time matters 
 
 

#sochi   vs.   2014_Winter_Olympics 
#jan25   vs.   Egypt_Revolution_of_2011 
#mh370  vs.   Malaysia_Airlines_Flight_370 
#crimea  vs.   Ukrainian_crisis 

#germany : 

July 2014 

2014_FiFA_World_Cup 

July 2015 

Greek_government-debt_crisis 

Sep 2015 

European_migrant_crisis 

Hannover, Germany,  2-3 November 2015 



Mostly in tweet level: 

•  Tweak the similarities (TAGME, CIKM’10; Liu, ACL’13) 

•  Employ Twitter-specific features with human supervision 

(Meij, WSDM’12; Guo, NAACL’13) 

•  Expand context to users (Cassidy, COLING’12; KAURI; 

KDD’13), time (Fang, TACL’14; Hua, SIGMOD’15) 

Annotating hashtags is limited to general topic models (Ma, 

CIKM’14; Bansal, ECIR’15) 
 
 

Semantic Annotations in Twitter 
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Main Idea 

Hard%to%believe%anyone%can%do%worse%than%Russia%in%#Sochi.%Brazil%
seems%to%be%trying%pre;y%hard%though!%spor=ngnews.com…%%%%

#sochi(Sochi%2014:%Record%number%of%posi=ve%tests%
F%SkySports:%q.gs/6nbAA%

#Sochi%Sea%Port.%What%a%
beau=ful%site!%#Russia(

2014_Winter_Olympics%

Port_of_Sochi%

 
Align contexts from  
both sides: 
 
•  Twitter: All constituent 

tweets of the hashtag 
 
•  Wikipedia: Temporal 

signals from page views 
and edit history 
 

Hannover, Germany,  2-3 November 2015 



Framework Outline 
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Problem: Given a trending hashtag, its burst time period T, 
identify top-k most prominent entities to describe the 
hashtag in T. 

 
Three steps: 

1.  Candidate Entities Identification 

2.  Entity – Hashtag Similarities 

3.  Entity Prominence Ranking 
 
 

Hannover, Germany,  2-3 November 2015 



Candidate Entities Identification 
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Mine from tweets contents via lexical matching. 

•  Twitter side: Extract n-grams from tweets (n ≤ 5) 

•  Wikipedia side: Build a lexicon for each entity: Anchors of 

incoming links, Redirects, Titles, Disambiguation pages 

•  Start with sample text, expand via links to increase recall 

 

 

Hannover, Germany,  2-3 November 2015 



P(t|m):ȱ“Commonness”

44

P(Title|”Chicago”)

Commonness(m� t)  count(mo t)
count(mo t ')

t '�W
¦

Entity – Hashtag Similarities: Link-based 

9 

•  Build upon phase – 

entity similarities 

•  Use Commonness 

•  Aggregate linearly to 

hashtag – entity 

similarity 

 

 
Hannover, Germany,  2-3 November 2015 

(Slide from Dan Roth: “Wikification and Beyond: The Challenges of Entity and Concept Grounding”. Tutorial 
at ACL 2014) 



Entity – Hashtag Similarities: Text-based 
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•  Compare the distributions of words over hashtags and texts 

of the entity 

•  Consider both entity’s static text and temporal edits: 

 

tween the entity e and the hashtag h. We further
constrain that ↵ + � + � = 1, so that the ranking
scores of entities are normalized between 0 and 1,
and that our learning algorithm is more tractable.
The algorithm, which automatically learns the pa-
rameters without the need of human-labeled data,
is explained in detail in Section 5.

4 Similarity Measures

We now discuss in detail how the similarity mea-
sures between hashtags and entities are computed.

4.1 Link-based Mention Similarity
The similarity of an entity with one individual
mention in a tweet can be interpreted as the prob-
abilistic prior in mapping the mention to the en-
tity via the lexicon. One common way to estimate
the entity prior exploits the anchor statistics from
Wikipedia links, and has been proven to work well
in different domains of text. We follow this ap-
proach and define LP (e|m) = |lm(e)|P

m0 |lm0 (e)| as the
link prior of the entity e given a mention m, where
l

m

(e) is the set of links with anchor m that point
to e. The mention similarity f

m

is measured as the
aggregation of link priors of the entity e over all
mentions in all tweets with the hashtag h:

f

m

(e, h) =
X

m

(LP (e|m) · q(m)) (2)

where q(m) is the frequency of the mention m over
all mentions of e in all tweets of h.

4.1.1 Context Similarity
To compute f

c

, we first construct the contexts for
hashtags and entities. The context of a hashtag
is built by extracting all words from its tweets.
We tokenize and parse the tweets’ part-of-speech
tags (Owoputi et al., 2013), and remove words
of Twitter-specific tags (e.g., @-mentions, URLs,
emoticons, etc.). Hashtags are normalized using
the word breaking method by Wang et al. (2011).

The textual context of an entity is extracted from
its Wikipedia article. One subtle aspect is that the
articles are not created at once, but are incremen-
tally updated over time in accordance with chang-
ing information about entities. Texts added in the
same time period of a trending hashtag contribute
more to the context similarity between the entity
and the hashtag. Based on this observation, we use
the Wikipedia revision history – an archive of all
revisions of Wikipedia articles – to calculate the

entity context. We collect the revisions of articles
during the time period T , plus one day to acknowl-
edge possible time lags. We compute the differ-
ence between two consecutive revisions, and ex-
tract only the added text snippets. These snippets
are accumulated to form the temporal context of
an entity e during T , denoted by C

T

(e). The dis-
tribution of a word w for the entity e is estimated
by a mixture between the probability of generating
w from the temporal context and from the general
context C(e) of the entity:

P̂ (w|e) = �P̂ (w|M
CT (e)

)+(1��)P̂ (w|M
C(e)

)

where M

CT (e)

and M

C(e)

are the language mod-
els of e based on C

T

(e) and C(e), respec-
tively. The probability P̂ (w|M

C(e)

) can be re-
garded as corresponding to the background model,
while P̂ (w|M

CT (e)

) corresponds to the fore-
ground model in traditional language modeling
settings. Here we use a simple maximum like-
lihood estimation to estimate these probabilities:
P̂ (w|M

C(e)

) = tfw,c

|C(e)| and P̂ (w|M
CT (e)

) =
tfw,cT
|CT (e)| , where tf

w,c

and tf

w,cT are the term fre-
quencies of w in the two text sources of C(e)
and C

T

(e), respectively, and |C(e)| and |C
T

(e)|
are the lengths of the two texts, respectively. We
use the same estimation for tweets: P̂ (w|h) =
tfw,D(h)

|D(h)| , where D(h) is the concatenated text of
all tweets of h in T . We use and normalize the
Kullback-Leibler divergence to compare the dis-
tributions over all words appearing both in the
Wikipedia contexts and the tweets:

KL(e k h) =
X

w

P̂ (w|e) · P̂ (w|e)
P̂ (w|h)

f

c

(e, h) = e

�KL(e k h) (3)

4.1.2 Temporal Similarity
The third similarity, f

t

, is computed using tem-
poral signals from both sources – Twitter and
Wikipedia. For the hashtags, we build the time
series based on the volume of tweets adopt-
ing the hashtag h on each day in T : TS

h

=
[n

1

, n

2

, . . . , n|T |]. Similarly for the entities, we
build the time series of view counts for the entity e

in T : TS
e

= [v
1

, v

2

, . . . , v|T |]. A time series sim-
ilarity metric is then used to compute f

t

. Several
metrics can be used, however most of them suf-
fer from the time lag and scaling discrepancy, or
incur expensive computational costs (Radinsky et
al., 2011). In this work, we employ a simple yet

Language model of e’s 
edited text during T	

Language model 
of e’s latest text 	

Hannover, Germany,  2-3 November 2015 



Entity – Hashtag Similarities: Collective 
Attention-based 

11 

 
Compare the temporal correlation of collective attention 
between the hashtag and the entity: 

time series shifted from TSe 
by q units 	

Figure 2: Excerpt of tweets about ice hockey results in the 2014 Winter Olympics (left), and the observed
linking process between time-aligned revisions of candidate Wikipedia entities (right). Links come more
from prominent entities to marginal ones to provide background, or more context for the topics. Thus,
starting from prominent entities, we can reach more entities in the graph of candidate entities

effective metric that is agnostic to the scaling and
time lag of time series (Yang and Leskovec, 2011).
It measures the distance between two time series
by finding optimal shifting and scaling parameters
to match the shape of two time series:

f

t

(e, h) = min
q,�

kTS
h

� �d

q

(TS
e

)k
kTS

h

k (4)

where d
q

(TS
e

) is the time series derived from TS

e

by shifting q time units, and k·k is the L

2

norm. It
has been proven that Equation 4 has a closed-form
solution for � given fixed q, thus we can design an
efficient gradient-based optimization algorithm to
compute f

t

(Yang and Leskovec, 2011).

5 Entity Prominence Ranking

5.1 Ranking Framework
To unify the individual similarities into one global
metric (Equation 1), we need a guiding premise
of what manifest the prominence of an entity to a
hashtag. Such a premise can be instructed through
manual assessment (Meij et al., 2012; Guo et al.,
2013), but it requires human-labeled data and is
biased from evaluator to evaluator. Other heuris-
tics assume that entities close to the main topic of
a text are also coherent to each other (Ratinov et
al., 2011; Liu et al., 2013). Based on this, state-of-
the-art methods in traditional disambiguation es-
timate entity prominence by optimizing the over-
all coherence of the entities’ semantic relatedness.
However, this coherence does not hold for topics
in hashtags: Entities reported in a big topic such
as the Olympics vary greatly with different sub-
events. They are not always coherent to each other,

as they are largely dependent on the users’ diverse
attention to each sub-event. This heterogeneity of
hashtags calls for a different premise, abandoning
the idea of coherence.

Influence Maximization (IM) We propose a
new approach to find entities for a hashtag. We
use an observed behavioral pattern in creating
Wikipedia pages for guiding our approach to en-
tity prominence: Wikipedia articles of entities that
are prominent for a topic are quickly created or
updated,1 and subsequently enriched with links to
related entities. This linking process signals the
dynamics of editor attention and exposure to the
event (Keegan et al., 2011). We argue that the pro-
cess does not, or to a much lesser degree, happen to
more marginal entities or to very general entities.
As illustrated in Figure 2, the entities closer to the
2014 Olympics get more updates in the revisions
of their Wikipedia articles, with subsequent links
pointing to articles of more distant entities. The
direction of the links influences the shifting atten-
tion of users (Keegan et al., 2011) as they follow
the structure of articles in Wikipedia.

We assume that, similar to Wikipedia, the entity
prominence also influences how users are exposed
and spread the hashtag on Twitter. In particular,
the initial spreading of a trending hashtag involves
more entities in the focus of the topic. Subsequent
exposure and spreading of the hashtag then include
other related entities (e.g., discussing background
or providing context), driven by interests in differ-
ent parts of the topic. Based on this assumption,

1Osborne et al. (2012) suggested a time lag of 3 hours.

Hannover, Germany,  2-3 November 2015 

[1]  Jaewon Yang, Jure Leskovec. “Patterns of Temporal Variation in Online Media”. WSDM 2011 



Entity Prominence Ranking 
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•  Rank by the unified similarity score: 

 

•  To learn the model ω = (α, β, γ), we need a premise of what 

makes an entity prominent ! 

•  The coherence premise[2] is not applicable at topic level 

[2]  Ratinov et al. “Local and Global Algorithms for Disambiguation to Wikipedia”. ACL 2012 

ing day, where the users’ interest in the underly-
ing topic remains stronger than in other periods.
We denote with T (h) (or T for short) one hashtag
burst time period, and with D

T

(h) the set of tweets
containing the hashtag h created during T .

Task Definition Given a trending hashtag h and
the burst time period T of h, identify the top-k
most prominent entities to describe h during T .

It is worth noting that not all trending hashtags
are mapable to Wikipedia entities, as the coverage
of topics in Wikipedia is much lower than on Twit-
ter. This is also the limitation of systems relying
on Wikipedia such as entity disambiguation, which
can only disambiguate popular entities and not the
ones in the long tail. In this study, we focus on the
precision and the popular trending hashtags, and
leave the improvement of recall to future work.

Overview We approach the task in three steps.
The first step is to identify all entity candidates by
checking surface forms of the constituent tweets
of the hashtag. In the second step, we compute
different similarities between each candidate and
the hashtag, based on different types of contexts,
which are derived from either side (Wikipedia or
Twitter). Finally, we learn a unified ranking func-
tion for each (hashtag, entity) pair and choose the
top-k entities with the highest scores. The ranking
function is learned through an unsupervised model
and needs no human-defined labels.

3.1 Entity Linking
The most obvious resource to identify candidate
entities for a hashtag is via its tweets. We follow
common approaches that use a lexicon to match
each textual phrase in a tweet to a potential en-
tity set (Shen et al., 2013; Fang and Chang, 2014).
Our lexicon is constructed from Wikipedia page ti-
tles, hyperlink anchors, redirects, and disambigua-
tion pages, which are mapped to the correspond-
ing entities. As for the tweet phrases, we extract
all n-grams (n  5) from the input tweets within
T . We apply the longest-match heuristic (Meij et
al., 2012): We start with the longest n-grams and
stop as soon as the entity set is found, otherwise
we continue with the smaller constituent n-grams.

Candidate Set Expansion While the lexicon-
based linking works well for single tweets, ap-
plying it on the hashtag level has subtle implica-
tions. Processing a huge amount of text, especially
during a hashtag burst time period, incurs expen-

sive computational costs. Therefore, to guarantee a
good recall in this step while still maintaining fea-
sible computation, we apply entity linking only on
a random sample of the complete tweet set. Then,
for each candidate entity e, we include all entities
whose Wikipedia article is linked with the article
of e by an outgoing or incoming link.

3.2 Measuring Entity–Hashtag Similarities
To rank the entity by prominence, we measure the
similarity between each candidate entity and the
hashtag. We study three types of similarities:

Mention Similarity This measure relies on the
explicit mentions of entities in tweets. It assumes
that entities directly linked from more prominent
anchors are more relevant to the hashtag. It is es-
timated using both statistics from Wikipedia and
tweet phrases, and turns out to be surprisingly ef-
fective in practice (Fang and Chang, 2014).

Context Similarity For entities that are not di-
rectly linked to mentions (the mention similar-
ity is zero) we exploit external resources instead.
Their prominence is perceived by users via exter-
nal sources, such as web pages linked from tweets,
or entity home pages or Wikipedia pages. By ex-
ploiting the content of entities from these external
sources, we can complement the explicit similarity
metrics based on mentions.

Temporal Similarity The two measures above
rely on the textual representation and are degraded
by the linguistic difference between the two plat-
forms. To overcome this drawback, we incorpo-
rate the temporal dynamics of hashtags and enti-
ties, which serve as a proxy to the change of user
interests towards the underlying topics (Ciglan and
Nørvåg, 2010). We employ the correlation be-
tween the times series of hashtag adoption and the
entity view as the third similarity measure.

3.3 Ranking Entity Prominence
While each similarity measure captures one evi-
dence of the entity prominence, we need to unify
all scores to obtain a global ranking function. In
this work, we propose to combine the individual
similarities using a linear function:

f(e, h) = ↵f

m

(e, h)+�f

c

(e, h)+�f

t

(e, h) (1)

where ↵,�, � are model weights and f

m

, f

c

, f

t

are
the similarity measures based on mentions, con-
text, and temporal information, respectively, be-

tween the entity e and the hashtag h. We further
constrain that ↵ + � + � = 1, so that the ranking
scores of entities are normalized between 0 and 1,
and that our learning algorithm is more tractable.
The algorithm, which automatically learns the pa-
rameters without the need of human-labeled data,
is explained in detail in Section 5.

4 Similarity Measures

We now discuss in detail how the similarity mea-
sures between hashtags and entities are computed.

4.1 Link-based Mention Similarity
The similarity of an entity with one individual
mention in a tweet can be interpreted as the prob-
abilistic prior in mapping the mention to the en-
tity via the lexicon. One common way to estimate
the entity prior exploits the anchor statistics from
Wikipedia links, and has been proven to work well
in different domains of text. We follow this ap-
proach and define LP (e|m) = |lm(e)|P

m0 |lm0 (e)| as the
link prior of the entity e given a mention m, where
l

m

(e) is the set of links with anchor m that point
to e. The mention similarity f

m

is measured as the
aggregation of link priors of the entity e over all
mentions in all tweets with the hashtag h:

f

m

(e, h) =
X

m

(LP (e|m) · q(m)) (2)

where q(m) is the frequency of the mention m over
all mentions of e in all tweets of h.

4.1.1 Context Similarity
To compute f

c

, we first construct the contexts for
hashtags and entities. The context of a hashtag
is built by extracting all words from its tweets.
We tokenize and parse the tweets’ part-of-speech
tags (Owoputi et al., 2013), and remove words
of Twitter-specific tags (e.g., @-mentions, URLs,
emoticons, etc.). Hashtags are normalized using
the word breaking method by Wang et al. (2011).

The textual context of an entity is extracted from
its Wikipedia article. One subtle aspect is that the
articles are not created at once, but are incremen-
tally updated over time in accordance with chang-
ing information about entities. Texts added in the
same time period of a trending hashtag contribute
more to the context similarity between the entity
and the hashtag. Based on this observation, we use
the Wikipedia revision history – an archive of all
revisions of Wikipedia articles – to calculate the

entity context. We collect the revisions of articles
during the time period T , plus one day to acknowl-
edge possible time lags. We compute the differ-
ence between two consecutive revisions, and ex-
tract only the added text snippets. These snippets
are accumulated to form the temporal context of
an entity e during T , denoted by C

T

(e). The dis-
tribution of a word w for the entity e is estimated
by a mixture between the probability of generating
w from the temporal context and from the general
context C(e) of the entity:

P̂ (w|e) = �P̂ (w|M
CT (e)

)+(1��)P̂ (w|M
C(e)

)

where M

CT (e)

and M

C(e)

are the language mod-
els of e based on C

T

(e) and C(e), respec-
tively. The probability P̂ (w|M

C(e)

) can be re-
garded as corresponding to the background model,
while P̂ (w|M

CT (e)

) corresponds to the fore-
ground model in traditional language modeling
settings. Here we use a simple maximum like-
lihood estimation to estimate these probabilities:
P̂ (w|M

C(e)

) = tfw,c

|C(e)| and P̂ (w|M
CT (e)

) =
tfw,cT
|CT (e)| , where tf

w,c

and tf

w,cT are the term fre-
quencies of w in the two text sources of C(e)
and C

T

(e), respectively, and |C(e)| and |C
T

(e)|
are the lengths of the two texts, respectively. We
use the same estimation for tweets: P̂ (w|h) =
tfw,D(h)

|D(h)| , where D(h) is the concatenated text of
all tweets of h in T . We use and normalize the
Kullback-Leibler divergence to compare the dis-
tributions over all words appearing both in the
Wikipedia contexts and the tweets:

KL(e k h) =
X

w

P̂ (w|e) · P̂ (w|e)
P̂ (w|h)

f

c

(e, h) = e

�KL(e k h) (3)

4.1.2 Temporal Similarity
The third similarity, f

t

, is computed using tem-
poral signals from both sources – Twitter and
Wikipedia. For the hashtags, we build the time
series based on the volume of tweets adopt-
ing the hashtag h on each day in T : TS

h

=
[n

1

, n

2

, . . . , n|T |]. Similarly for the entities, we
build the time series of view counts for the entity e

in T : TS
e

= [v
1

, v

2

, . . . , v|T |]. A time series sim-
ilarity metric is then used to compute f

t

. Several
metrics can be used, however most of them suf-
fer from the time lag and scaling discrepancy, or
incur expensive computational costs (Radinsky et
al., 2011). In this work, we employ a simple yet

Hannover, Germany,  2-3 November 2015 
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Observation: Prominent pages are first created / updated with 
texts, then linked to other pages 
•  Reflect the shifting attentions of users in social events[3] 

#love(#Sochi(2014:%Russia's%ice%hockey%dream%
ends%as%Vladimir%Pu=n%watches%on%…%

#sochi%Sochi:%Team%USA%takes%3%more%medals,%
tops%leaderboard%|%h;p://abc7.com%
h;p://adf.ly/dp8Hn%%

#Sochi%bear%aWer%#Russia's%hockey%team%
eliminated%with%loss%to%#Finland(

I'm%s=ll%happy%because%Finland%won.%Is%that%too%
stupid..?%#Hockey%#Sochi(

…3

2014_Winter_Olympics3

Vladimir_Pu>n3

Russia_men’s_na>onal
_ice_3hockey_team3

Russia3

Sochi3

Ice_hockey_at_the_2014_
Winter_Olympics3

Finland3

United_States3
Ice_hockey3

[3]  Keegan et al. “Hot off the wiki: Dynamics, Practices, and structures in Wikipedia..” WikiSym 2011 

Hannover, Germany,  2-3 November 2015 



Influence Maximization 
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Premise: Rank top-k entities so as to maximize the spreading 
to all other candidates.  

#love(#Sochi(2014:%Russia's%ice%hockey%dream%
ends%as%Vladimir%Pu=n%watches%on%…%

#sochi%Sochi:%Team%USA%takes%3%more%medals,%
tops%leaderboard%|%h;p://abc7.com%
h;p://adf.ly/dp8Hn%%

#Sochi%bear%aWer%#Russia's%hockey%team%
eliminated%with%loss%to%#Finland(

I'm%s=ll%happy%because%Finland%won.%Is%that%too%
stupid..?%#Hockey%#Sochi(

…3

2014_Winter_Olympics3

Vladimir_Pu>n3

Russia_men’s_na>onal
_ice_3hockey_team3

Russia3

Sochi3

Ice_hockey_at_the_2014_
Winter_Olympics3

Finland3

United_States3
Ice_hockey3

Hannover, Germany,  2-3 November 2015 
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Data: 

•  Collect 500 million tweets for 4 months (Jan-Apr 2014) via 

Streaming API.  

•  Process and sample distinct trending hashtags 

o  Several heuristics + clustering methods[4] used à 2444 

trendings 

o  3 inspectors chose 30 meaningful trending hashtags 

[4]  Lehmann et al. “Dynamical Classes of Collective Attention in Twitter”. WWW 2012 

Hannover, Germany,  2-3 November 2015 
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Baselines: 

•  Wikiminer (Milne & Witten, CIKM 2008) 

•  Tagme (Ferragina et al., IEEE Software 2012) 

•  KAURI (Shen et al., KDD 2013) 

•  Meij method (Meij et al., WSDM 2012) 

•  Individual similarities : M (link), C (text), T (temporal) 

Evaluation: 6,965 entity-hashtag pairs are evaluated from 

0-1-2 scales (5 evaluators, inter-agreement 0.6) 
Hannover, Germany,  2-3 November 2015 
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Tagme Wikiminer Meij Kauri M C T IPL

P@5 0.284 0.253 0.500 0.305 0.453 0.263 0.474 0.642
P@15 0.253 0.147 0.670 0.319 0.312 0.245 0.378 0.495
MAP 0.148 0.096 0.375 0.162 0.211 0.140 0.291 0.439

Table 2: Experimental results on the sampled trending hashtags.

Baseline We compare IPL with other entity an-
notation methods. Our first group of baselines in-
cludes entity linking systems in domains of gen-
eral text, Wikiminer (Milne and Witten, 2008),
and short text, Tagme (Ferragina and Scaiella,
2012). For each method, we use the default param-
eter settings, apply them for the individual tweets,
and take the average of the annotation confidence
scores as the prominence ranking function. The
second group of baselines includes systems specif-
ically designed for microblogs. For the content-
based methods, we compare against Meij et al.
(2012), which uses a supervised method to rank en-
tities with respect to tweets. We train the model us-
ing the same training data as in the original paper.
For the graph-based method, we compare against
KAURI (Shen et al., 2013), a method which uses
user interest propagation to optimize the entity
linking scores. To tune the parameters, we pick
up four hashtags from different clusters, randomly
sample 50 tweets for each, and manually annotate
the tweets. For all baselines, we obtained the im-
plementation from the authors. The exception is
Meij method, where we implemented ourselves,
but we clarified with the authors via emails on sev-
eral settings. In addition, we also compare three
variants of our method, using only local functions
for entity ranking (referred to as M , C, and T for
mention, context, and time, respectively).

Evaluation In total, there are 6, 965 entity-
hashtag pairs returned by all systems. We employ
five volunteers to evaluate the pairs in the range
from 0 to 2, where 0 means the entity is noisy or
obviously unrelated, 2 means the entity is strongly
tied to the topic of the hashtag, and 1 means that
although the entity and hashtag might share some
common contexts, they are not involved in a di-
rect relationship (for instance, the entity is a too
general concept such as Ice hockey, as in the case
illustrated in Figure 2). The annotators were ad-
vised to use search engines, the Twitter search box
or Wikipedia archives whenever applicable to get
more background on the stories. Inter-annotator
agreement under Fleiss score is 0.625.

6.2 Results and Discussion

Table 2 shows the performance comparison of the
methods using the standard metrics for a ranking
system (precision at 5 and 15 and MAP at 15). In
general, all baselines perform worse than reported
in the literature, confirming the higher complexity
of the hashtag annotation task as compared to tra-
ditional tasks. Interestingly enough, using our lo-
cal similarities already produces better results than
Tagme and Wikiminer. The local model f

m

signif-
icantly outperforms both the baselines in all met-
rics. Combining the similarities improves the per-
formance even more significantly.2 Compared to
the baselines, IPL improves the performance by
17-28%. The time similarity achieves the high-
est result compared to other content-based mention
and context similarities. This supports our assump-
tion that lexical matching is not always the best
strategy to link entities in tweets. The time series-
based metric incurs lower cost than others, yet it
produces a considerably good performance. Con-
text similarity based on Wikipedia edits does not
yield much improvement. This can be explained
in two ways. First, information in Wikipedia is
largely biased to popular entities, it fails to cap-
ture many entities in the long tail. Second, lan-
guage models are dependent on direct word rep-
resentations, which are different between Twitter
and Wikipedia. This is another advantage of non-
content measures such as f

t

.
For the second group of baselines (Kauri and

Meij), we also observe the reduction in precision,
especially for Kauri. This is because the method
relies on the coherence of user interests within a
group of tweets to be able to perform well, which
does not hold in the context of hashtags. One as-
tonishing result is that Meij performs better than
IPL in terms of P@15. However, it performs worse
in terms of MAP and P@5, suggesting that most
of the correctly identified entities are ranked lower
in the list. This is reasonable, as Meij attempts to
optimize (with human supervision effort) the se-

2All significance tests are done against both Tagme and
Wikiminer, with a p-value < 0.01.

Better in general 

Non-verbal signal is 
good 

Hannover, Germany,  2-3 November 2015 
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Tagme Wikiminer Meij Kauri M C T IPL

P@5 0.284 0.253 0.500 0.305 0.453 0.263 0.474 0.642
P@15 0.253 0.147 0.670 0.319 0.312 0.245 0.378 0.495
MAP 0.148 0.096 0.375 0.162 0.211 0.140 0.291 0.439

Table 2: Experimental results on the sampled trending hashtags.

Baseline We compare IPL with other entity an-
notation methods. Our first group of baselines in-
cludes entity linking systems in domains of gen-
eral text, Wikiminer (Milne and Witten, 2008),
and short text, Tagme (Ferragina and Scaiella,
2012). For each method, we use the default param-
eter settings, apply them for the individual tweets,
and take the average of the annotation confidence
scores as the prominence ranking function. The
second group of baselines includes systems specif-
ically designed for microblogs. For the content-
based methods, we compare against Meij et al.
(2012), which uses a supervised method to rank en-
tities with respect to tweets. We train the model us-
ing the same training data as in the original paper.
For the graph-based method, we compare against
KAURI (Shen et al., 2013), a method which uses
user interest propagation to optimize the entity
linking scores. To tune the parameters, we pick
up four hashtags from different clusters, randomly
sample 50 tweets for each, and manually annotate
the tweets. For all baselines, we obtained the im-
plementation from the authors. The exception is
Meij method, where we implemented ourselves,
but we clarified with the authors via emails on sev-
eral settings. In addition, we also compare three
variants of our method, using only local functions
for entity ranking (referred to as M , C, and T for
mention, context, and time, respectively).

Evaluation In total, there are 6, 965 entity-
hashtag pairs returned by all systems. We employ
five volunteers to evaluate the pairs in the range
from 0 to 2, where 0 means the entity is noisy or
obviously unrelated, 2 means the entity is strongly
tied to the topic of the hashtag, and 1 means that
although the entity and hashtag might share some
common contexts, they are not involved in a di-
rect relationship (for instance, the entity is a too
general concept such as Ice hockey, as in the case
illustrated in Figure 2). The annotators were ad-
vised to use search engines, the Twitter search box
or Wikipedia archives whenever applicable to get
more background on the stories. Inter-annotator
agreement under Fleiss score is 0.625.

6.2 Results and Discussion

Table 2 shows the performance comparison of the
methods using the standard metrics for a ranking
system (precision at 5 and 15 and MAP at 15). In
general, all baselines perform worse than reported
in the literature, confirming the higher complexity
of the hashtag annotation task as compared to tra-
ditional tasks. Interestingly enough, using our lo-
cal similarities already produces better results than
Tagme and Wikiminer. The local model f

m

signif-
icantly outperforms both the baselines in all met-
rics. Combining the similarities improves the per-
formance even more significantly.2 Compared to
the baselines, IPL improves the performance by
17-28%. The time similarity achieves the high-
est result compared to other content-based mention
and context similarities. This supports our assump-
tion that lexical matching is not always the best
strategy to link entities in tweets. The time series-
based metric incurs lower cost than others, yet it
produces a considerably good performance. Con-
text similarity based on Wikipedia edits does not
yield much improvement. This can be explained
in two ways. First, information in Wikipedia is
largely biased to popular entities, it fails to cap-
ture many entities in the long tail. Second, lan-
guage models are dependent on direct word rep-
resentations, which are different between Twitter
and Wikipedia. This is another advantage of non-
content measures such as f

t

.
For the second group of baselines (Kauri and

Meij), we also observe the reduction in precision,
especially for Kauri. This is because the method
relies on the coherence of user interests within a
group of tweets to be able to perform well, which
does not hold in the context of hashtags. One as-
tonishing result is that Meij performs better than
IPL in terms of P@15. However, it performs worse
in terms of MAP and P@5, suggesting that most
of the correctly identified entities are ranked lower
in the list. This is reasonable, as Meij attempts to
optimize (with human supervision effort) the se-

2All significance tests are done against both Tagme and
Wikiminer, with a p-value < 0.01.

Better when 
including   

low-ranked entities. 

Better at top 
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Manually class events (hash tags’ peaks) to endogenous / 
exogenous via checking tweets’ contents   

0"

0.1"

0.2"

0.3"

0.4"

0.5"

0.6"

Tagme" WM" Meij" Kauri" M" C" T" IPL"

Endogenous"

Exogenous"

Figure 3: Performance of the methods for different
types of trending hashtags.

Figure 4: IPL compared to other baselines on dif-
ferent sizes of the burst time window T .

mantic agreement between entities and informa-
tion found in the tweets, instead of ranking their
prominence as in our work. To investigate this
case further, we re-examined the hashtags and di-
vided them by their semantics, as to whether the
hashtags are spurious trends of memes inside so-
cial media (endogenous, e.g., “#stopasian2014”),
or whether they reflect external events (exogenous,
e.g., “#mh370”). The performance of the methods
in terms of MAP scores is shown in Figure 3. It can
be clearly seen that entity linking methods perform
well in the endogenous group, but then deteriorate
in the exogenous group. The explanation is that
for endogenous hashtags, the topical consonance
between tweets is very low, thus most of the as-
sessments become just verifying general concepts
(such as locations) In this case, topical annotation
is trumped by conceptual annotation. However,
whenever the hashtag evolves into a meaningful
topic, a deeper annotation method will produce a
significant improvement, as seen in Figure 3.

Finally, we study the impact of the burst time pe-
riod on the annotation quality. For this, we expand
the window size w (cf. Section 6.1) and examine
how different methods perform. The result is de-
picted in Figure 4. It is obvious that within the win-

dow of 2 months (where the hashtag time series is
constructed and a trending time is identified), our
method is stable and always outperforms the base-
lines by a large margin. Even when the trending
hashtag has been saturated, hence introduced more
noise, our method is still able to identify the promi-
nent entities with high quality.

7 Conclusion and Future Work

In this work, we address the new problem of
topically annotating a trending hashtag using
Wikipedia entities, which has many important ap-
plications in social media analysis. We study
Wikipedia temporal resources and find that using
efficient time series-based measures can comple-
ment content-based methods well in the domain
of Twitter. We propose use similarity measures
to model both the local mention-based, as well as
the global context- and time-based prominence of
entities. We propose a novel strategy of topical
annotation of texts using and influence maximiza-
tion approach and design an efficient learning algo-
rithm to automatically unify the similarities with-
out the need of human involvement. The experi-
ments show that our method outperforms signifi-
cantly the established baselines.

As future work, we aim to improve the effi-
ciency of our entire workflow, such that the anno-
tation can become an end-to-end service. We also
aim to improve the context similarity between en-
tities and the topic, for example by using a deeper
distributional semantics-based method, instead of
language models as in our current work. In addi-
tion, we plan to extend the annotation framework
to other types of trending topics, by including the
type of out-of-knowledge entities. Finally, we are
investigating how to apply more advanced influ-
ence maximization methods. We believe that in-
fluence maximization has a great potential in NLP
research, beyond the scope of annotation for mi-
croblogging topics.
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Influence of size of burst time period: 

•  Larger window à more noisy introduced 
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•  Semantic Annotation in topic level is difficult 

•  Lesson learnt: Can be improved by exploiting temporal and 

contexts from both sides (non verbal evidences are 

promising) 

•  Future direction: Improve efficiency, text-based similarities 

Hannover, Germany,  2-3 November 2015 
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Thank you J 

 

Question ? 
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Trending hashtag: There are peaks[1] from daily tweet count 
time series: 

•  Variance score > 900 

•  Highest peak > 15 x median of 2-month window sample 

Burst time periods: w-window around one peak 

Entities: Wikipedia pages, no redirects, disambiguation, lists 

•  Entity text, view count per day, edits during T 
 

[1]  Lehman et al. “Dynamical classes of collective attention in Twitter”. WWW 2012 
Hannover, Germany,  2-3 November 2015 
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Mine from tweets contents, via lexical matching. 

•  Twitter side: Extract n-grams from tweets (n ≤ 5) 

o  Parse POS tags for tokens, filter patterns using rules 

•  Wikipedia side: Build a lexicon (anchors, redirects, titles, 

disambiguation pages) 

•  Practical issue:  

o  Start from sample tweets 

o  Expand to incoming / outgoing linked entities 
Hannover, Germany,  2-3 November 2015 
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Measure the observed spreading activities via entities 
influence scores 

•  Learn ω to minimize the loss w.r.t. influence score r: 

 

•  Influence score is estimated via random walks: 

•  r(e,h) and f(e,h) is jointly learnt via gradient descent method 

we propose to gauge the entity prominence as its
potential in maximizing the information spreading
within all entities present in the tweets of the hash-
tag. In other words, the problem of ranking the
most prominent entities becomes identifying the
set of entities that lead to the largest number of en-
tities in the candidate set. This problem is known
in social network research as influence maximiza-
tion (Kempe et al., 2003).

Iterative Influence-Prominence Learning (IPL)
IM itself is an NP-hard problem (Kempe et al.,
2003). Therefore, we propose an approximation
framework, which can jointly learn the influence
scores of the entity and the entity prominence
together. The framework (called IPL) contains
several iterations, each consisting of two steps:
(1) Pick up a model and use it to compute the entity
influence score. (2) Based on the influence scores,
update the entity prominence. In the sequel we de-
tail our learning framework.

5.2 Entity Graph
Influence Graph To compute the entity influ-
ence scores, we first construct the entity influence
graph as follows. For each hashtag h, we construct
a directed graph G

h

= (E
h

, V

h

), where the nodes
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✓ E consist of all candidate entities (cf. Sec-
tion 3.1), and an edge (e
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indicates that
there is a link from e

j

’s Wikipedia article to e

i

’s.
Note that edges of the influence graph are inversed
in direction to links in Wikipedia, as such a link
gives an “influence endorsement” from the desti-
nation entity to the source entity.

Entity Relatedness In this work, we assume that
an entity endorses more of its influence score to
highly related entities than to lower related ones.
We use a popular entity relatedness measure sug-
gested by Milne and Witten (2008):
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and e
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, respectively, and E is the set of all enti-
ties in Wikipedia. The influence transition from e
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is defined as the normalized value:
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Influence Score Let r
h

be the influence score
vector of entities in G

h

. We can estimate r
h

effi-
ciently using random walk models, similarly to the

Algorithm 1: Entity Influence-Prominence Learning
Input : h, T,DT (h),B, k, learning rate µ, threshold ✏
Output: !, top-k most prominent entities.

Initialize: ! := !(0)

Calculate fm, fc, ft, f! := f!(0) using Eqs. 1, 2, 3, 4
while true do

f̂! := normalize f!
Set sh := f̂!, calculate rh using Eq. 6
Sort rh, get the top-k entities E(h, k)
if
P

e2E(h,k) L(f(e, h), r(e, h)) < ✏ then
Stop

end
! := ! � µ

P
e2E(h,k) rL(f(e, h), r(e, h))

end
return !, E(h, k)

baseline method suggested by Liu et al. (2014):

rh := ⌧Brh + (1� ⌧)sh (6)

where B is the influence transition matrix, sh are
the initial influence scores that are based on the en-
tity prominence model (Step 1 of IPL), and ⌧ is the
damping factor.

5.3 Learning Algorithm

Now we detail the IPL algorithm. The objective
is to learn the model ! = (↵,�, �) of the global
function (Equation 1). The general idea is that we
find an optimal ! such that the average error with
respect to the top influencing entities is minimized

! = argmin
X

E(h,k)

L(f(e, h), r(e, h))

where r(e, h) is the influence score of e and h,
E(h, k) is the set of top-k entities with highest
r(e, h), and L is the squared error loss function,
L(x, y) = (x�y)

2

2

.
The main steps are depicted in Algorithm 1. We

start with an initial guess for !, and compute the
similarities for the candidate entities. Here f

m

, f
c

,
f
t

, and f
!

represent the similarity score vectors. We
use matrix multiplication to calculate the similari-
ties efficiently. In each iteration, we first normalize
f
!

such that the entity scores sum up to 1. A ran-
dom walk is performed to calculate the influence
score rh. Then we update ! using a batch gradient
descent method on the top-k influencer entities. To
derive the gradient of the loss function L, we first
remark that our random walk Equation 6 is similar
to context-sensitive PageRank (Haveliwala, 2002).
Using the linearity property (Fogaras et al., 2005),
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5.3 Learning Algorithm

Now we detail the IPL algorithm. The objective
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find an optimal ! such that the average error with
respect to the top influencing entities is minimized
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dom walk is performed to calculate the influence
score rh. Then we update ! using a batch gradient
descent method on the top-k influencer entities. To
derive the gradient of the loss function L, we first
remark that our random walk Equation 6 is similar
to context-sensitive PageRank (Haveliwala, 2002).
Using the linearity property (Fogaras et al., 2005),
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Built upon direct similarities of tweets – entities: 

•  Based on commonness (Meij, WSDM12; Fang, TACL14) 

 

•  Aggregate to hashtag level, weighted by the frequency:  

No. of incoming links 
to e with anchor m 

No. of times m 
appears in h’s tweets 

tween the entity e and the hashtag h. We further
constrain that ↵ + � + � = 1, so that the ranking
scores of entities are normalized between 0 and 1,
and that our learning algorithm is more tractable.
The algorithm, which automatically learns the pa-
rameters without the need of human-labeled data,
is explained in detail in Section 5.

4 Similarity Measures

We now discuss in detail how the similarity mea-
sures between hashtags and entities are computed.

4.1 Link-based Mention Similarity
The similarity of an entity with one individual
mention in a tweet can be interpreted as the prob-
abilistic prior in mapping the mention to the en-
tity via the lexicon. One common way to estimate
the entity prior exploits the anchor statistics from
Wikipedia links, and has been proven to work well
in different domains of text. We follow this ap-
proach and define LP (e|m) = |lm(e)|P

m0 |lm0 (e)| as the
link prior of the entity e given a mention m, where
l

m

(e) is the set of links with anchor m that point
to e. The mention similarity f

m

is measured as the
aggregation of link priors of the entity e over all
mentions in all tweets with the hashtag h:

f

m

(e, h) =
X

m

(LP (e|m) · q(m)) (2)

where q(m) is the frequency of the mention m over
all mentions of e in all tweets of h.

4.1.1 Context Similarity
To compute f

c

, we first construct the contexts for
hashtags and entities. The context of a hashtag
is built by extracting all words from its tweets.
We tokenize and parse the tweets’ part-of-speech
tags (Owoputi et al., 2013), and remove words
of Twitter-specific tags (e.g., @-mentions, URLs,
emoticons, etc.). Hashtags are normalized using
the word breaking method by Wang et al. (2011).

The textual context of an entity is extracted from
its Wikipedia article. One subtle aspect is that the
articles are not created at once, but are incremen-
tally updated over time in accordance with chang-
ing information about entities. Texts added in the
same time period of a trending hashtag contribute
more to the context similarity between the entity
and the hashtag. Based on this observation, we use
the Wikipedia revision history – an archive of all
revisions of Wikipedia articles – to calculate the

entity context. We collect the revisions of articles
during the time period T , plus one day to acknowl-
edge possible time lags. We compute the differ-
ence between two consecutive revisions, and ex-
tract only the added text snippets. These snippets
are accumulated to form the temporal context of
an entity e during T , denoted by C

T

(e). The dis-
tribution of a word w for the entity e is estimated
by a mixture between the probability of generating
w from the temporal context and from the general
context C(e) of the entity:

P̂ (w|e) = �P̂ (w|M
CT (e)

)+(1��)P̂ (w|M
C(e)

)

where M

CT (e)

and M

C(e)

are the language mod-
els of e based on C

T

(e) and C(e), respec-
tively. The probability P̂ (w|M

C(e)

) can be re-
garded as corresponding to the background model,
while P̂ (w|M

CT (e)

) corresponds to the fore-
ground model in traditional language modeling
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4.1.2 Temporal Similarity
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•  A link from a to b indicates an “influence endorsement” 

from b to a 

•  Level of endorsement is proportional to the relation weight: 

 
 

•  Normalize to have influence matrix: 

 
 

we propose to gauge the entity prominence as its
potential in maximizing the information spreading
within all entities present in the tweets of the hash-
tag. In other words, the problem of ranking the
most prominent entities becomes identifying the
set of entities that lead to the largest number of en-
tities in the candidate set. This problem is known
in social network research as influence maximiza-
tion (Kempe et al., 2003).

Iterative Influence-Prominence Learning (IPL)
IM itself is an NP-hard problem (Kempe et al.,
2003). Therefore, we propose an approximation
framework, which can jointly learn the influence
scores of the entity and the entity prominence
together. The framework (called IPL) contains
several iterations, each consisting of two steps:
(1) Pick up a model and use it to compute the entity
influence score. (2) Based on the influence scores,
update the entity prominence. In the sequel we de-
tail our learning framework.

5.2 Entity Graph
Influence Graph To compute the entity influ-
ence scores, we first construct the entity influence
graph as follows. For each hashtag h, we construct
a directed graph G

h

= (E
h

, V

h

), where the nodes
E

h

✓ E consist of all candidate entities (cf. Sec-
tion 3.1), and an edge (e

i

, e

j

) 2 V

h

indicates that
there is a link from e

j

’s Wikipedia article to e

i

’s.
Note that edges of the influence graph are inversed
in direction to links in Wikipedia, as such a link
gives an “influence endorsement” from the desti-
nation entity to the source entity.

Entity Relatedness In this work, we assume that
an entity endorses more of its influence score to
highly related entities than to lower related ones.
We use a popular entity relatedness measure sug-
gested by Milne and Witten (2008):

MW (e
1

, e

2

) = 1� log(max(|I1|,|I2|)�log(|I1\I2|)))
log(|E|)�log(min(|I1|,|I2|))

where I

1

and I

2

are sets of entities having links to
e

1

and e

2

, respectively, and E is the set of all enti-
ties in Wikipedia. The influence transition from e

i

to e

j

is defined as the normalized value:

b

i,j

=
MW (e

i

, e

j

)P
(ei,ek)2V MW (e

i

, e

k

)
(5)

Influence Score Let r
h

be the influence score
vector of entities in G

h

. We can estimate r
h

effi-
ciently using random walk models, similarly to the

Algorithm 1: Entity Influence-Prominence Learning
Input : h, T,DT (h),B, k, learning rate µ, threshold ✏
Output: !, top-k most prominent entities.

Initialize: ! := !(0)

Calculate fm, fc, ft, f! := f!(0) using Eqs. 1, 2, 3, 4
while true do

f̂! := normalize f!
Set sh := f̂!, calculate rh using Eq. 6
Sort rh, get the top-k entities E(h, k)
if
P

e2E(h,k) L(f(e, h), r(e, h)) < ✏ then
Stop

end
! := ! � µ

P
e2E(h,k) rL(f(e, h), r(e, h))

end
return !, E(h, k)

baseline method suggested by Liu et al. (2014):

rh := ⌧Brh + (1� ⌧)sh (6)

where B is the influence transition matrix, sh are
the initial influence scores that are based on the en-
tity prominence model (Step 1 of IPL), and ⌧ is the
damping factor.

5.3 Learning Algorithm

Now we detail the IPL algorithm. The objective
is to learn the model ! = (↵,�, �) of the global
function (Equation 1). The general idea is that we
find an optimal ! such that the average error with
respect to the top influencing entities is minimized

! = argmin
X

E(h,k)

L(f(e, h), r(e, h))

where r(e, h) is the influence score of e and h,
E(h, k) is the set of top-k entities with highest
r(e, h), and L is the squared error loss function,
L(x, y) = (x�y)

2

2

.
The main steps are depicted in Algorithm 1. We

start with an initial guess for !, and compute the
similarities for the candidate entities. Here f

m

, f
c

,
f
t

, and f
!

represent the similarity score vectors. We
use matrix multiplication to calculate the similari-
ties efficiently. In each iteration, we first normalize
f
!

such that the entity scores sum up to 1. A ran-
dom walk is performed to calculate the influence
score rh. Then we update ! using a batch gradient
descent method on the top-k influencer entities. To
derive the gradient of the loss function L, we first
remark that our random walk Equation 6 is similar
to context-sensitive PageRank (Haveliwala, 2002).
Using the linearity property (Fogaras et al., 2005),
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•  Calculate for each peak, the vector (fa,fb,fc) of portion of 

tweets before, during, and after the peak time. 

•  Clustering with EM, choose 4 most plausible clusters. 

•  Sample separately from each cluster 
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